Zeros of random real sections: Law of Large Numbers and Central Limit Theorem

Thomas Letendre (Sorbonne Université) joint works with M. Ancona and M. Puchol

Workshop on Random Real Algebraic Geometry
Güzelyurt - October 21st, 2019

Kostlan polynomials

Kostlan polynomials

A Kostlan polynomial of degree d is a random homogeneous polynomial

$$
P=\sum_{|\alpha|=d} a_{\alpha} \sqrt{\binom{d}{\alpha}} X^{\alpha}
$$

in $\mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$, where the $\left(a_{\alpha}\right)_{|\alpha|=d}$ are i.i.d. (independent identically distributed) standard Gaussian variables in \mathbb{R}.

For all $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$:

- $|\alpha|=\alpha_{0}+\cdots+\alpha_{n}$ is the length of α;
- $\alpha!=\alpha_{0}!\cdots \alpha_{n}$! and, if $|\alpha|=d,\binom{d}{\alpha}=\frac{d!}{\alpha!}$;
- $X^{\alpha}=X_{0}^{\alpha_{0}} \cdots X_{n}^{\alpha_{n}}$.

Reminder on Gaussian distributions

$(V,\langle\cdot, \cdot\rangle)$ Euclidean space of dimension N, Λ self-adjoint positive operator.

Definition

A random vector X in V is a centered Gaussian of variance Λ if its distribution admits the density:

$$
\frac{1}{(2 \pi)^{\frac{N}{2}} \sqrt{\operatorname{det}(\Lambda)}} \exp \left(-\frac{1}{2}\left\langle\Lambda^{-1} x, x\right\rangle\right)
$$

with respect to the Lebesgue measure. Denoted by $X \sim \mathcal{N}(\Lambda)$.

A standard Gaussian is $X \sim \mathcal{N}$ (Id).
In an orthonormal basis $\left(e_{1}, \ldots, e_{N}\right)$, we have $X=\sum_{i=1}^{N} a_{i} e_{i}$, where the coefficients $\left(a_{i}\right)$ are i.i.d. $\mathcal{N}(1)$.

Back to Kostlan polynomials

A Kostlan polynomial is a standard Gaussian P in $\mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$, for the inner product such that $\left\{\left.\sqrt{\binom{d}{\alpha}} X^{\alpha}| | \alpha \right\rvert\,=d\right\}$ is orthonormal:

$$
\langle P, Q\rangle=\frac{1}{\pi^{n+1} d!} \int_{\mathbb{C}^{n+1}} P(z) \overline{Q(z)} e^{-\|z\|^{2}} \mathrm{~d} z .
$$

Up to a multiplicative constant, it is the only inner product such that:

- the monomials are orthogonal;
- for all $O \in O_{n+1}(\mathbb{R}),\langle P \circ O, Q \circ O\rangle=\langle P, Q\rangle$.

Zeros of Kostlan polynomials

Let $d \geqslant 1$, let $n \geqslant 1$ and let $r \in\{1, \ldots, n\}$.

$$
Z_{d}=P_{1}^{-1}(0) \cap \cdots \cap P_{r}^{-1}(0) \subset \mathbb{R P}^{n}
$$

where P_{1}, \ldots, P_{r} are i.i.d. Kostlan polynomials in $\mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$.

Lemma
Almost surely, Z_{d} is a smooth closed submanifold of $\mathbb{R}^{P}{ }^{n}$ of codimension r.

Theorem (Kostlan, 1993)
For all $d \geqslant 1, \mathbb{E}\left[\operatorname{Vol}\left(Z_{d}\right)\right]=d^{\frac{r}{2}}$.

Random algebraic curves in $\mathbb{R P}^{2}(n=2, r=1)$

Figure: $d=1$

Pictures by Vincent Beffara.

Random algebraic curves in $\mathbb{R P}^{2}(n=2, r=1)$

Figure: $d=2$

Pictures by Vincent Beffara.

Random algebraic curves in $\mathbb{R P}^{2}(n=2, r=1)$

Figure: $d=100$

Pictures by Vincent Beffara.

Random algebraic curves in $\mathbb{R P}^{2}(n=2, r=1)$

Figure: $d=200$

Pictures by Vincent Beffara.

Random algebraic curves in $\mathbb{R}^{2}(n=2, r=1)$

Figure: $d=500$

Pictures by Vincent Beffara.

Random algebraic curves in $\mathbb{R P}^{2}(n=2, r=1)$

Figure: $d=1000$

Pictures by Vincent Beffara.

Random algebraic curves in $\mathbb{R P}^{2}(n=2, r=1)$

Figure: $d=2000$

Pictures by Vincent Beffara.

Random algebraic curves in $\mathbb{R P}^{2}(n=2, r=1)$

Figure: $d=5000$

Pictures by Vincent Beffara.

Random algebraic curves in $\mathbb{R P}^{2}(n=2, r=1)$

Figure: $d=10000$

Pictures by Vincent Beffara.

Random algebraic curves in $\mathbb{R P}^{2}(n=2, r=1)$

Figure: $d=20000$

Pictures by Vincent Beffara.

Central Limit Theorem for Kostlan polynomials

Theorem (Dalmao, 2015; Armentano-Azaïs-Dalmao-Leòn, 2018)
There exists $\sigma_{n, r}>0$ such that, as $d \rightarrow+\infty$:

$$
\operatorname{Var}\left(\operatorname{Vol}\left(Z_{d}\right)\right) \sim d^{r-\frac{n}{2}} \sigma_{n, r}^{2} .
$$

Moreover, the following holds in distribution:

$$
\frac{\operatorname{Vol}\left(Z_{d}\right)-d^{\frac{r}{2}}}{d^{\frac{r}{2}-\frac{n}{4}} \sigma_{n, r}} \underset{d \rightarrow+\infty}{ } \mathcal{N}(1) .
$$

Random real algebraic submanifolds

Geometric setting

\mathcal{X} complex projective manifold of dimension $n \geqslant 1$,
$\left(\mathcal{E}, h_{\mathcal{E}}\right)$ rank r Hermitian bundle over $\mathcal{X}(1 \leqslant r \leqslant n)$,
$\left(\mathcal{L}, h_{\mathcal{L}}\right)$ positive Hermitian line bundle over \mathcal{X},
ω Kähler form induced by the curvature of \mathcal{L}.

Assume that \mathcal{X}, \mathcal{L} and \mathcal{E} are equipped with compatible real structures (i.e. anti-holomorphic involutions).

Local model for $\left(\mathcal{E}, h_{\mathcal{E}}\right)$
Take $\mathbb{C}^{r} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ with the usual complex conjugation.
For all $z \in \mathbb{C}^{n}, h_{\mathcal{E}}(z)=\langle\cdot, \cdot\rangle$.

Space of real sections

For any $d \geqslant 1, \mathcal{E} \otimes \mathcal{L}^{d}$ real Hermitian bundle over \mathcal{X}, with $h_{d}=h_{\mathcal{E}} \otimes h_{\mathcal{L}}^{d}$. $H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ space of global holomorphic sections and:

$$
\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)=\left\{s \in H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right) \mid c_{d} \circ s=s \circ \mathcal{C X X}_{\mathcal{X}}\right\} .
$$

We have $N_{d}=\operatorname{dim} \mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)<+\infty$ and $N_{d} \xrightarrow[d \rightarrow+\infty]{ }+\infty$.

L^{2}-inner product

For all s and $s^{\prime} \in \mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$, we define:

$$
\left\langle s, s^{\prime}\right\rangle=\int_{\mathcal{X}} h_{d}\left(s, s^{\prime}\right) \frac{\omega^{n}}{n!} .
$$

Random real sections

We denote $M=\operatorname{Fix}\left(c_{\mathcal{X}}\right)$ the real locus of \mathcal{X} and assume $M \neq \emptyset$.
For all $d \geqslant 1, s_{d} \sim \mathcal{N}(\mathrm{ld})$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$, and $Z_{d}=s_{d}^{-1}(0) \cap M$.

Lemma

Z_{d} is almost surely a smooth closed submanifold of M of codimension r, for all d large enough.

Random real sections

We denote $M=\operatorname{Fix}\left(c_{\mathcal{X}}\right)$ the real locus of \mathcal{X} and assume $M \neq \emptyset$.
For all $d \geqslant 1, s_{d} \sim \mathcal{N}(\mathrm{Id})$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$, and $Z_{d}=s_{d}^{-1}(0) \cap M$.

Lemma

Z_{d} is almost surely a smooth closed submanifold of M of codimension r, for all d large enough.

Example

Take $\mathcal{X}=\mathbb{C P}^{n}, \mathcal{L}=\mathcal{O}(1)$ and $\mathcal{E}=\mathbb{C}^{r} \times \mathcal{X}$ trivial, with their canonical real and metric structures.

Then we have: $M=\mathbb{R}^{n}$ and $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)=\left(\mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]\right)^{r}$. s_{d} is a r-tuple of independent Kostlan polynomials.

Linear statistics

The Kähler form ω defines a Riemannian metric g on \mathcal{X}, hence on M. Volume measures on submanifolds of M are the ones induced by g.
Z_{d} defines a random Radon measure by:

$$
\forall \phi \in \mathcal{C}^{0}(M), \quad\left\langle Z_{d}, \phi\right\rangle=\int_{x \in Z_{d}} \phi(x)\left|\mathrm{d} V_{Z_{d}}\right|
$$

For $\phi=1$, we have $\left\langle Z_{d}, \mathbf{1}\right\rangle=\operatorname{Vol}\left(Z_{d}\right)$.

Case of maximal codimension ($r=n$)

Z_{d} is almost surely finite. The corresponding measure is $\sum_{x \in Z_{d}} \delta_{x}$, that is:

$$
\left\langle Z_{d}, \phi\right\rangle=\sum_{x \in Z_{d}} \phi(x)
$$

Moments, Law of Large Numbers

 and Central Limit Theorem
Expectation

Let $s_{d} \sim \mathcal{N}(\mathrm{ld})$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ and let Z_{d} denote its real zero set.
Theorem (Gayet-Welschinger, 2015; L., 2016)
For all $\phi \in \mathcal{C}^{0}(M)$, we have:

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]=d^{\frac{r}{2}}\left(\int_{M} \phi\left|\mathrm{~d} V_{M}\right|\right) \frac{\operatorname{Vol}\left(\mathbb{R P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)}+\|\phi\|_{\infty} O\left(d^{\frac{r}{2}-1}\right) .
$$

Expectation

Let $s_{d} \sim \mathcal{N}(\mathrm{Id})$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ and let Z_{d} denote its real zero set.
Theorem (Gayet-Welschinger, 2015; L., 2016)
For all $\phi \in \mathcal{C}^{0}(M)$, we have:

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]=d^{\frac{r}{2}}\left(\int_{M} \phi\left|\mathrm{~d} V_{M}\right|\right) \frac{\operatorname{Vol}\left(\mathbb{R P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)}+\|\phi\|_{\infty} O\left(d^{\frac{r}{2}-1}\right) .
$$

Corollary (Equidistribution in the mean)
As continuous linear maps on $\left(\mathcal{C}^{0}(M),\|\cdot\|_{\infty}\right)$,

$$
d^{-\frac{r}{2}} \mathbb{E}\left[Z_{d}\right] \xrightarrow[d \rightarrow+\infty]{ } \frac{\operatorname{Vol}\left(\mathbb{R P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)}\left|\mathrm{d} V_{M}\right| .
$$

Variance

Theorem (L.-Puchol, 2017)

There exists $\sigma_{n, r}>0$ such that, for all $\phi \in \mathcal{C}^{0}(M)$,

$$
\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)=d^{r-\frac{n}{2}} \sigma_{n, r}^{2}\left(\int_{M} \phi^{2}\left|\mathrm{~d} V_{M}\right|\right)+o\left(d^{r-\frac{n}{2}}\right) .
$$

- $\sigma_{n, r}$ is explicit and only depends on n and r, not on \mathcal{X}, \mathcal{E} and \mathcal{L}.
- $\sigma_{n, r}$ is the same as in the papers of Armentano-Azaïs-Dalmao-Leòn.
- The positivity of $\sigma_{n, r}$ is non-trivial.

Higher central moments

Definition

Let $p \geqslant 2$ and let X be an L^{p} real random variable, we denote the p-th central moment of X by: $m_{p}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{\rho}\right]$.

Definition

For all $p \in \mathbb{N}$, we denote by μ_{p} the p-th moment of a $\mathcal{N}(1)$ real variable. We have $\mu_{2 p}=\frac{(2 p)!}{2^{p} p!}$ and $\mu_{2 p+1}=0$ for all $p \in \mathbb{N}$.

Moments asymptotics

Moments Conjecture

For all $p \geqslant 2$, for all $\phi \in \mathcal{C}^{0}(M)$, we have:

$$
\begin{aligned}
m_{p}\left(\left\langle Z_{d}, \phi\right\rangle\right) & =\mu_{p} \operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)^{\frac{p}{2}}+o\left(d^{\frac{p}{2}\left(r-\frac{n}{2}\right)}\right) \\
& =\mu_{p} d^{\frac{p}{2}\left(r-\frac{n}{2}\right)} \sigma_{n, r}^{p}\left(\int_{M} \phi^{2}\left|\mathrm{~d} V_{M}\right|\right)^{\frac{p}{2}}+o\left(d^{\frac{p}{2}\left(r-\frac{n}{2}\right)}\right) .
\end{aligned}
$$

Moments asymptotics

Moments Conjecture

For all $p \geqslant 2$, for all $\phi \in \mathcal{C}^{0}(M)$, we have:

$$
\begin{aligned}
m_{p}\left(\left\langle Z_{d}, \phi\right\rangle\right) & =\mu_{p} \operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)^{\frac{p}{2}}+o\left(d^{\frac{p}{2}\left(r-\frac{n}{2}\right)}\right) \\
& =\mu_{p} d^{\frac{p}{2}\left(r-\frac{n}{2}\right)} \sigma_{n, r}^{p}\left(\int_{M} \phi^{2}\left|\mathrm{~d} V_{M}\right|\right)^{\frac{p}{2}}+o\left(d^{\frac{p}{2}\left(r-\frac{n}{2}\right)}\right)
\end{aligned}
$$

Theorem (Ancona-L., 2019)
The conjecture is true in the case $n=r=1$.

Strong Law of Large Numbers

We consider a random sequence $\left(s_{d}\right)_{d \geqslant 1}$ of random real sections such that:

- the terms are globally independent,
- for all $d \geqslant 1, s_{d} \sim \mathcal{N}(\mathrm{Id})$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$.
$\left(Z_{d}\right)_{d \geqslant 1}$ the random sequence of their real vanishing loci.

Theorem (L.-Puchol, 2017; Ancona-L., 2019)
If $n=1$ or $n \geqslant 3$ then, almost surely, for all $\phi \in \mathcal{C}^{0}(M)$ we have:

$$
d^{-\frac{r}{2}}\left\langle Z_{d}, \phi\right\rangle \xrightarrow[d \rightarrow+\infty]{ } \frac{\operatorname{Vol}\left(\mathbb{R} \mathbb{P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R}^{n}\right)} \int_{M} \phi\left|\mathrm{~d} V_{M}\right|
$$

Strong Law of Large Numbers

We consider a random sequence $\left(s_{d}\right)_{d \geqslant 1}$ of random real sections such that:

- the terms are globally independent,
- for all $d \geqslant 1, s_{d} \sim \mathcal{N}(\mathrm{ld})$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$.
$\left(Z_{d}\right)_{d \geqslant 1}$ the random sequence of their real vanishing loci.
Theorem (L.-Puchol, 2017; Ancona-L., 2019)
If $n=1$ or $n \geqslant 3$ then, almost surely, for all $\phi \in \mathcal{C}^{0}(M)$ we have:

$$
d^{-\frac{r}{2}}\left\langle Z_{d}, \phi\right\rangle \xrightarrow[d \rightarrow+\infty]{ } \frac{\operatorname{Vol}\left(\mathbb{R}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)} \int_{M} \phi\left|\mathrm{~d} V_{M}\right|
$$

- When $n \geqslant 3$, Corollary of the variance estimate.
- When $n=1$, Corollary of the moment estimate for $p=6$.
- For $n=2$, it would be implied by the Moments Conjecture for $p=4$.

Central Limit Theorem

Theorem (Ancona-L., 2019)
If $n=1$ then, for all $\phi \in \mathcal{C}^{0}(M) \backslash\{0\}$, the following holds in distribution:

$$
\frac{\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]}{\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)^{\frac{1}{2}}} \underset{d \rightarrow+\infty}{ } \mathcal{N}(1) .
$$

In particular,

$$
\frac{1}{d^{\frac{1}{4}} \sigma_{1,1}}\left(\left\langle Z_{d}, \phi\right\rangle-d^{\frac{1}{2}} \frac{1}{\pi} \int_{M} \phi\left|\mathrm{~d} V_{M}\right|\right) \underset{d \rightarrow+\infty}{\longrightarrow} \mathcal{N}\left(\int_{M} \phi^{2}\left|\mathrm{~d} V_{M}\right|\right)
$$

Central Limit Theorem

Theorem (Ancona-L., 2019)

If $n=1$ then, for all $\phi \in \mathcal{C}^{0}(M) \backslash\{0\}$, the following holds in distribution:

$$
\frac{\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]}{\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)^{\frac{1}{2}}} \underset{d \rightarrow+\infty}{ } \mathcal{N}(1) .
$$

In particular,

$$
\frac{1}{d^{\frac{1}{4}} \sigma_{1,1}}\left(\left\langle Z_{d}, \phi\right\rangle-d^{\frac{1}{2}} \frac{1}{\pi} \int_{M} \phi\left|\mathrm{~d} V_{M}\right|\right) \underset{d \rightarrow+\infty}{\longrightarrow} \mathcal{N}\left(\int_{M} \phi^{2}\left|\mathrm{~d} V_{M}\right|\right) .
$$

- The Central Limit Theorem is a corollary of the Moments Conjecture.
- Conjectured to hold for any (n, r).
- Proved for Kostlan polynomials (Armentano-Azaïs-Dalmao-Leòn).

Other corollaries

Let $n \geqslant 1$, let $r \in\{1, \ldots, n\}$ and let $p \geqslant 1$.
If the Moments Conjecture holds for $m_{2 p}$ in dimension n and codimension r, then we have the following corollaries. (True if $p=1$ or $n=1$.)

Corollary (Concentration in probability)

Let $\left(\varepsilon_{d}\right)_{d \geqslant 1}$ denote a positive sequence and let $\phi \in \mathcal{C}^{0}(M)$. Then, as $d \rightarrow+\infty$, we have:

$$
\mathbb{P}\left(d^{-\frac{r}{2}}\left|\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right|>\varepsilon_{d}\right)=O\left(\left(d^{\frac{n}{4}} \varepsilon_{d}\right)^{-2 p}\right)
$$

Corollary (Hole probability)

Let U be a non-empty open subset of M. Then, as $d \rightarrow+\infty$, we have:

$$
\mathbb{P}\left(Z_{d} \cap U=\emptyset\right)=O\left(d^{-\frac{n p}{2}}\right)
$$

Proofs of the corollaries

Concentration in probability

By Markov's Inequality for the $2 p$-th moment, we have:

$$
\begin{aligned}
\mathbb{P}\left(d^{-\frac{r}{2}}\left|\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right|>\varepsilon_{d}\right) & \leqslant \varepsilon_{d}^{-2 p} m_{2 p}\left(d^{-\frac{r}{2}}\left\langle Z_{d}, \phi\right\rangle\right) \\
& \leqslant \varepsilon_{d}^{-2 p} d^{-p r} m_{2 p}\left(\left\langle Z_{d}, \phi\right\rangle\right) .
\end{aligned}
$$

If the Moments Conjecture holds for $m_{2 p}$, then $m_{2 p}\left(\left\langle Z_{d}, \phi\right\rangle\right)=O\left(d^{p r-\frac{p n}{2}}\right)$.
We get a $O\left(\left(d^{\frac{n}{4}} \varepsilon_{d}\right)^{-2 p}\right)$.

Hole probability

Let U be a non-empty open subset of M. There exists $\phi_{U} \in \mathcal{C}^{0}(M)$ s.t.:

- for all $x \in U, \phi U(x)>0$,
- for all $x \in M \backslash U, \phi U(x)=0$.

Let $\varepsilon>0$ be such that $\varepsilon<\frac{\operatorname{Vol}\left(\mathbb{R P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R} \mathbb{P}^{n}\right)} \int_{M} \phi_{u}\left|\mathrm{~d} V_{M}\right|$.

Hole probability

Let U be a non-empty open subset of M. There exists $\phi_{U} \in \mathcal{C}^{0}(M)$ s.t.:

- for all $x \in U, \phi_{U}(x)>0$,
- for all $x \in M \backslash U, \phi_{U}(x)=0$.

Let $\varepsilon>0$ be such that $\varepsilon<\frac{\operatorname{Vol}\left(\mathbb{R P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)} \int_{M} \phi_{U}\left|\mathrm{~d} V_{M}\right|$.
For all d large enough, we have $d^{-\frac{r}{2}} \mathbb{E}\left[\left\langle Z_{d}, \phi_{U}\right\rangle\right]>\varepsilon$, so that:

$$
\begin{aligned}
\mathbb{P}\left(Z_{d} \cap U=\emptyset\right) & =\mathbb{P}\left(\left\langle Z_{d}, \phi_{U}\right\rangle=0\right) \\
& \leqslant \mathbb{P}\left(d^{-\frac{r}{2}}\left|\left\langle Z_{d}, \phi_{U}\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi_{U}\right\rangle\right]\right|>\varepsilon\right) .
\end{aligned}
$$

Hole probability

Let U be a non-empty open subset of M. There exists $\phi_{U} \in \mathcal{C}^{0}(M)$ s.t.:

- for all $x \in U, \phi_{U}(x)>0$,
- for all $x \in M \backslash U, \phi U(x)=0$.

Let $\varepsilon>0$ be such that $\varepsilon<\frac{\operatorname{Vol}\left(\mathbb{R P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)} \int_{M} \phi_{U}\left|\mathrm{~d} V_{M}\right|$.
For all d large enough, we have $d^{-\frac{r}{2}} \mathbb{E}\left[\left\langle Z_{d}, \phi_{U}\right\rangle\right]>\varepsilon$, so that:

$$
\begin{aligned}
\mathbb{P}\left(Z_{d} \cap U=\emptyset\right) & =\mathbb{P}\left(\left\langle Z_{d}, \phi_{U}\right\rangle=0\right) \\
& \leqslant \mathbb{P}\left(d^{-\frac{r}{2}}\left|\left\langle Z_{d}, \phi_{U}\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi_{U}\right\rangle\right]\right|>\varepsilon\right)
\end{aligned}
$$

Under the Moments Conjecture for $m_{2 p}$, this is $O\left(\left(d^{-\frac{n}{4} \varepsilon}\right)^{-2 p}\right)=O\left(d^{-\frac{n p}{2}}\right)$.

Proof of the Law of Large Numbers (part 1)

Let $p \geqslant 1$. For all $\phi \in \mathcal{C}^{0}(M)$ we have:

$$
\mathbb{E}\left[\sum_{d \geqslant 1}\left(d^{-\frac{r}{2}}\left|\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right|\right)^{2 p}\right]=\sum_{d \geqslant 1} d^{-p r} m_{2 p}\left(\left\langle Z_{d}, \phi\right\rangle\right)
$$

If $m_{2 p}\left(\left\langle Z_{d}, \phi\right\rangle\right)=O\left(d^{p r-\frac{n p}{2}}\right)$ and $n p \geqslant 3$, then the sum is finite.

Proof of the Law of Large Numbers (part 1)

Let $p \geqslant 1$. For all $\phi \in \mathcal{C}^{0}(M)$ we have:

$$
\mathbb{E}\left[\sum_{d \geqslant 1}\left(d^{-\frac{r}{2}}\left|\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right|\right)^{2 p}\right]=\sum_{d \geqslant 1} d^{-p r} m_{2 p}\left(\left\langle Z_{d}, \phi\right\rangle\right)
$$

If $m_{2 p}\left(\left\langle Z_{d}, \phi\right\rangle\right)=O\left(d^{p r-\frac{n p}{2}}\right)$ and $n p \geqslant 3$, then the sum is finite.
In this case, a.s., $\sum_{d \geqslant 1}\left(d^{-\frac{r}{2}}\left|\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right|\right)^{2 p}<+\infty$, hence:

$$
d^{-\frac{r}{2}}\left\langle Z_{d}, \phi\right\rangle \sim d^{-\frac{r}{2}} \mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right] \underset{d \rightarrow+\infty}{ } \frac{\operatorname{Vol}\left(\mathbb{R} \mathbb{P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)} \int_{M} \phi\left|\mathrm{~d} V_{M}\right|
$$

Proof of the Law of Large Numbers (part 1)

Let $p \geqslant 1$. For all $\phi \in \mathcal{C}^{0}(M)$ we have:

$$
\mathbb{E}\left[\sum_{d \geqslant 1}\left(d^{-\frac{r}{2}}\left|\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right|\right)^{2 p}\right]=\sum_{d \geqslant 1} d^{-p r} m_{2 p}\left(\left\langle Z_{d}, \phi\right\rangle\right)
$$

If $m_{2 p}\left(\left\langle Z_{d}, \phi\right\rangle\right)=O\left(d^{p r-\frac{n p}{2}}\right)$ and $n p \geqslant 3$, then the sum is finite.
In this case, a.s., $\sum_{d \geqslant 1}\left(d^{-\frac{r}{2}}\left|\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right|\right)^{2 p}<+\infty$, hence:

$$
d^{-\frac{r}{2}}\left\langle Z_{d}, \phi\right\rangle \sim d^{-\frac{r}{2}} \mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right] \underset{d \rightarrow+\infty}{ } \frac{\operatorname{Vol}\left(\mathbb{R} \mathbb{P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)} \int_{M} \phi\left|\mathrm{~d} V_{M}\right|
$$

- True for $n=1$ with $p=3$, and for $n \geqslant 3$ with $p=1$.
- For $n=2, p=2$ would be enough.

Proof of the Law of Large Numbers (part 2)

Let $\left(\phi_{k}\right)_{k \geqslant 0}$ be a dense sequence in $\left(\mathcal{C}^{0}(M),\|\cdot\|_{\infty}\right)$ such that $\phi_{0}=\mathbf{1}$. For all $\phi \in \mathcal{C}^{0}(M)$ and $k \geqslant 0$,

$$
\begin{aligned}
& \left|d^{-\frac{r}{2}}\left\langle Z_{d}, \phi\right\rangle-\frac{\operatorname{Vol}\left(\mathbb{R P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R}^{n}\right)} \int_{M} \phi\right| \mathrm{d} V_{M}| | \\
& \leqslant\left\|\phi-\phi_{k}\right\|_{\infty}\left(d^{-\frac{r}{2}} \operatorname{Vol}\left(Z_{d}\right)+\frac{\operatorname{Vol}\left(\mathbb{R P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)} \operatorname{Vol}(M)\right) \\
& \quad+\left|d^{-\frac{r}{2}}\left\langle Z_{d}, \phi_{k}\right\rangle-\frac{\operatorname{Vol}\left(\mathbb{R}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R}^{n}\right)} \int_{M} \phi_{k}\right| \mathrm{d} V_{M}| | .
\end{aligned}
$$

Proof of the Law of Large Numbers (part 2)

Let $\left(\phi_{k}\right)_{k \geqslant 0}$ be a dense sequence in $\left(\mathcal{C}^{0}(M),\|\cdot\|_{\infty}\right)$ such that $\phi_{0}=\mathbf{1}$. For all $\phi \in \mathcal{C}^{0}(M)$ and $k \geqslant 0$,

$$
\begin{aligned}
& \left|d^{-\frac{r}{2}}\left\langle Z_{d}, \phi\right\rangle-\frac{\operatorname{Vol}\left(\mathbb{R}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R}^{n}\right)} \int_{M} \phi\right| \mathrm{d} V_{M}| | \\
& \leqslant\left\|\phi-\phi_{k}\right\|_{\infty}\left(d^{-\frac{r}{2}} \operatorname{Vol}\left(Z_{d}\right)+\frac{\operatorname{Vol}\left(\mathbb{R} \mathbb{P}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)} \operatorname{Vol}(M)\right) \\
& \quad+\left|d^{-\frac{r}{2}}\left\langle Z_{d}, \phi_{k}\right\rangle-\frac{\operatorname{Vol}\left(\mathbb{R}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R}^{(1)}\right)} \int_{M} \phi_{k}\right| \mathrm{d} V_{M}| | .
\end{aligned}
$$

A.s., for all $k \geqslant 0, d^{-\frac{r}{2}}\left\langle Z_{d}, \phi_{k}\right\rangle \xrightarrow[d \rightarrow+\infty]{\longrightarrow} \frac{\operatorname{Vol}\left(\mathbb{R}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)} \int_{M} \phi_{k}\left|\mathrm{~d} V_{M}\right|$. In particular, the sequence $\left(d^{-\frac{r}{2}} \operatorname{Vol}\left(Z_{d}\right)\right)_{d \geqslant 1}$ is bounded.

Proof of the Central Limit Thereom

Let $\phi \in \mathcal{C}^{0}(M) \backslash\{0\}$, for d large enough,

$$
X_{d}=\frac{\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]}{\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)^{\frac{1}{2}}}
$$

is a well-defined, centered and normalized random variable.

Proof of the Central Limit Thereom

Let $\phi \in \mathcal{C}^{0}(M) \backslash\{0\}$, for d large enough,

$$
X_{d}=\frac{\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]}{\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)^{\frac{1}{2}}}
$$

is a well-defined, centered and normalized random variable.

We assume the Moments Conjecture in dimension n and codimension r. For all $p \geqslant 3, m_{p}\left(X_{d}\right)$ is well-defined for d large enough, and:

$$
m_{p}\left(X_{d}\right)=\frac{m_{p}\left(\left\langle Z_{d}, \phi\right\rangle\right)}{\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)^{\frac{p}{2}}} \xrightarrow[d \rightarrow+\infty]{ } \mu_{p}
$$

By the Method of Moments, $X_{d} \xrightarrow[d \rightarrow+\infty]{ } \mathcal{N}(1)$ in distribution.

The Method of Moments

By Markov's Inequality, $\mathbb{P}\left(\left|X_{d}\right|>\varepsilon^{-\frac{1}{2}}\right) \leqslant \varepsilon$. That is $\left(X_{d}\right)$ is tight.
Tightness implies compactness in distribution.
Enough to prove: $\mathcal{N}(1)$ only accumulation point of $\left(X_{d}\right)$ in distribution.

The Method of Moments

By Markov's Inequality, $\mathbb{P}\left(\left|X_{d}\right|>\varepsilon^{-\frac{1}{2}}\right) \leqslant \varepsilon$. That is $\left(X_{d}\right)$ is tight.
Tightness implies compactness in distribution.
Enough to prove: $\mathcal{N}(1)$ only accumulation point of $\left(X_{d}\right)$ in distribution.

Assume $X_{d_{n}} \xrightarrow[n \rightarrow+\infty]{ } X$ in distribution.
Since the sequence $\left(\mathbb{E}\left[X_{d_{n}}^{2 p}\right]\right)_{n \geqslant 0}$ is bounded, $\left(X_{d_{n}}^{p}\right)_{n \geqslant 0}$ is equi-integrable, and:

$$
\mathbb{E}\left[X^{p}\right]=\lim _{n \rightarrow+\infty} \mathbb{E}\left[X_{d_{n}}^{p}\right]=\mu_{p}
$$

The Method of Moments

By Markov's Inequality, $\mathbb{P}\left(\left|X_{d}\right|>\varepsilon^{-\frac{1}{2}}\right) \leqslant \varepsilon$. That is $\left(X_{d}\right)$ is tight.
Tightness implies compactness in distribution.
Enough to prove: $\mathcal{N}(1)$ only accumulation point of $\left(X_{d}\right)$ in distribution.

Assume $X_{d_{n}} \xrightarrow[n \rightarrow+\infty]{ } X$ in distribution.
Since the sequence $\left(\mathbb{E}\left[X_{d_{n}}^{2 p}\right]\right)_{n \geqslant 0}$ is bounded, $\left(X_{d_{n}}^{p}\right)_{n \geqslant 0}$ is equi-integrable, and:

$$
\mathbb{E}\left[X^{p}\right]=\lim _{n \rightarrow+\infty} \mathbb{E}\left[X_{d_{n}}^{p}\right]=\mu_{p}
$$

$\mathcal{N}(1)$ is characterized by its moments, hence $X \sim \mathcal{N}(1)$.

Proofs of the moments estimates

The correlation kernel

Correlation function

Recall that a Kostlan polynomial is a random $P \in \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$ s.t.

$$
P=\sum_{|\alpha|=d} a_{\alpha} \sqrt{\binom{d}{\alpha}} X^{\alpha}
$$

where the $\left(a_{\alpha}\right)_{|\alpha|=d}$ are i.i.d. $\mathcal{N}(1)$.
P defines a centered Gaussian process $(P(x))_{x \in \mathbb{S}^{n}}$.

Correlation function

Recall that a Kostlan polynomial is a random $P \in \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$ s.t.

$$
P=\sum_{|\alpha|=d} a_{\alpha} \sqrt{\binom{d}{\alpha}} X^{\alpha}
$$

where the $\left(a_{\alpha}\right)_{|\alpha|=d}$ are i.i.d. $\mathcal{N}(1)$.
P defines a centered Gaussian process $(P(x))_{x \in \mathbb{S}^{n}}$.
As such, characterized by its correlation function: $e_{d}(x, y)=\mathbb{E}[P(x) P(y)]$.

- $(P(x), P(y))$ is a centered Gaussian \mathbb{R}^{2} of variance $\binom{e_{d}(x, x) e_{d}(x, y)}{e_{d}(y, x) e_{d}(y, y)}$.
- Taking partial derivatives, we get: $\frac{\partial e_{d}}{\partial x_{i}}(x, y)=\mathbb{E}\left[\frac{\partial P}{\partial x_{i}}(x) P(y)\right]$.

Correlation function of the Kostlan polynomials

$$
\begin{aligned}
e_{d}(x, y) & =\mathbb{E}[P(x) P(y)] \\
& =\sum_{|\alpha|=d=|\beta|} \mathbb{E}\left[a_{\alpha} a_{\beta}\right] \sqrt{\binom{d}{\alpha}} \sqrt{\binom{d}{\beta}} x^{\alpha} y^{\beta} \\
& =\sum_{|\alpha|=d}\binom{d}{\alpha} x^{\alpha} y^{\alpha} \\
& =(\langle x, y\rangle)^{d} \\
& =\cos (\rho(x, y))^{d}
\end{aligned}
$$

where ρ is the geodesic distance in \mathbb{S}^{n}.

Correlation kernel for random real sections

More generally, $s_{d} \sim \mathcal{N}(\mathrm{Id})$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ defines a centered Gaussian process $\left(s_{d}(x)\right)_{x \in \mathcal{X}}$, with values in $\mathcal{E} \otimes \mathcal{L}^{d}$.
Characterized by its correlation kernel e_{d}, section of $\left(\mathcal{E} \otimes \mathcal{L}^{d}\right) \boxtimes\left(\mathcal{E} \otimes \mathcal{L}^{d}\right)^{*}$:

$$
e_{d}(x, y):\left(\mathcal{E} \otimes \mathcal{L}^{d}\right)_{y} \rightarrow\left(\mathcal{E} \otimes \mathcal{L}^{d}\right)_{x}
$$

is the covariance operator of $s_{d}(x)$ and $s_{d}(y)$.

Correlation kernel for random real sections

More generally, $s_{d} \sim \mathcal{N}(\mathrm{Id})$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ defines a centered Gaussian process $\left(s_{d}(x)\right)_{x \in \mathcal{X}}$, with values in $\mathcal{E} \otimes \mathcal{L}^{d}$.
Characterized by its correlation kernel e_{d}, section of $\left(\mathcal{E} \otimes \mathcal{L}^{d}\right) \boxtimes\left(\mathcal{E} \otimes \mathcal{L}^{d}\right)^{*}$:

$$
e_{d}(x, y):\left(\mathcal{E} \otimes \mathcal{L}^{d}\right)_{y} \rightarrow\left(\mathcal{E} \otimes \mathcal{L}^{d}\right)_{x}
$$

is the covariance operator of $s_{d}(x)$ and $s_{d}(y)$.

Lemma

For all $d \geqslant 1, e_{d}$ is the Bergman kernel of $\left(\mathcal{E} \otimes \mathcal{L}^{d}, h_{d}\right)$.

That is e_{d} is the integral kernel of the orthogonal projection onto $H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ in the space of L^{2} sections of $\mathcal{E} \otimes \mathcal{L}^{d}$.

Estimates for the Bergman kernel

Theorem (Dai-Liu-Ma, 2006)
For all $x \in M$, for all $z \in T_{x} M$ such that $\|z\| \leqslant d^{\frac{1}{4}}$, we have:

$$
e_{d}\left(x, x+\frac{z}{\sqrt{d}}\right) \simeq e^{-\frac{1}{2}\|z\|^{2}} I_{r}
$$

as $d \rightarrow+\infty$, in the real normal trivialization around x.
This holds in the \mathcal{C}^{k} sense, uniformly in (x, z).

Estimates for the Bergman kernel

Theorem (Dai-Liu-Ma, 2006)
For all $x \in M$, for all $z \in T_{x} M$ such that $\|z\| \leqslant d^{\frac{1}{4}}$, we have:

$$
e_{d}\left(x, x+\frac{z}{\sqrt{d}}\right) \simeq e^{-\frac{1}{2}\|z\|^{2}} I_{r}
$$

as $d \rightarrow+\infty$, in the real normal trivialization around x.
This holds in the \mathcal{C}^{k} sense, uniformly in (x, z).

Theorem (Ma-Marinescu, 2015)

There exists $C>0$ such that, for all $k \in \mathbb{N}$,

$$
\left\|e_{d}(x, y)\right\|_{\mathcal{C}^{k}}=O\left(d^{\frac{k}{2}} \exp (-C \sqrt{d} \rho(x, y))\right)
$$

as $d \rightarrow+\infty$, uniformly in (x, y).

Some heuristic for the expected volume

Cut M into boxes of size $d^{-\frac{1}{2}}$. There are about $d^{\frac{n}{2}} \operatorname{Vol}(M)$ such pieces.

In each box, zooming in at scale $d^{-\frac{1}{2}}, Z_{d}$ converges in distribution.

The expected volume in each box is of order $d^{-\frac{n-r}{2}}$.

The boxes are independent, hence $\mathbb{E}\left[\operatorname{Vol}\left(Z_{d}\right)\right]$ is of order $d^{\frac{r}{2}} \operatorname{Vol}(M)$.

Some heuristic for the variance of the volume

Denoting $Z_{d, i}=Z_{d} \cap(i$-th box $)$, we have $\operatorname{Vol}\left(Z_{d}\right)=\sum_{i} \operatorname{Vol}\left(Z_{d, i}\right)$.

$$
\begin{aligned}
\operatorname{Var}\left(\operatorname{Vol}\left(Z_{d}\right)\right) & =\mathbb{E}\left[\operatorname{Vol}\left(Z_{d}\right)^{2}\right]-\mathbb{E}\left[\operatorname{Vol}\left(Z_{d}\right)\right]^{2} \\
& =\sum_{i, j} \mathbb{E}\left[\operatorname{Vol}\left(Z_{d, i}\right) \operatorname{Vol}\left(Z_{d, j}\right)\right]-\mathbb{E}\left[\operatorname{Vol}\left(Z_{d, i}\right)\right] \mathbb{E}\left[\operatorname{Vol}\left(Z_{d, j}\right)\right]
\end{aligned}
$$

Some heuristic for the variance of the volume

Denoting $Z_{d, i}=Z_{d} \cap(i$-th box $)$, we have $\operatorname{Vol}\left(Z_{d}\right)=\sum_{i} \operatorname{Vol}\left(Z_{d, i}\right)$.

$$
\begin{aligned}
\operatorname{Var}\left(\operatorname{Vol}\left(Z_{d}\right)\right) & =\mathbb{E}\left[\operatorname{Vol}\left(Z_{d}\right)^{2}\right]-\mathbb{E}\left[\operatorname{Vol}\left(Z_{d}\right)\right]^{2} \\
& =\sum_{i, j} \mathbb{E}\left[\operatorname{Vol}\left(Z_{d, i}\right) \operatorname{Vol}\left(Z_{d, j}\right)\right]-\mathbb{E}\left[\operatorname{Vol}\left(Z_{d, i}\right)\right] \mathbb{E}\left[\operatorname{Vol}\left(Z_{d, j}\right)\right]
\end{aligned}
$$

If $i \neq j, Z_{d, i}$ and $Z_{d, j}$ are independent. Only terms with $i=j$ contribute.
These terms are of the order of $\operatorname{Vol}\left(Z_{d, i}\right)^{2}$, i.e. d^{r-n}.
Hence $\operatorname{Var}\left(\operatorname{Vol}\left(Z_{d}\right)\right) \simeq d^{r-\frac{n}{2}} \operatorname{Vol}(M)$.

Kac-Rice formulas

Jacobians and evaluation maps

Definition

L linear between Euclidean spaces, its Jacobian is: $\left|\operatorname{det}^{\perp}(L)\right|=\operatorname{det}\left(L L^{*}\right)^{\frac{1}{2}}$.
Note that $\left|\operatorname{det}^{\perp}(L)\right|>0$ if and only if L is surjective.

Jacobians and evaluation maps

Definition

L linear between Euclidean spaces, its Jacobian is: $\left|\operatorname{det}^{\perp}(L)\right|=\operatorname{det}\left(L L^{*}\right)^{\frac{1}{2}}$.
Note that $\left|\operatorname{det}^{\perp}(L)\right|>0$ if and only if L is surjective.

Definition

Let $k \geqslant 1$. For all $d \geqslant 1$ and $x=\left(x_{1}, \ldots, x_{k}\right) \in M^{k}$, we denote $\mathrm{ev}_{x}^{d}: s \mapsto\left(s\left(x_{1}\right), \ldots, s\left(x_{k}\right)\right)$ from $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$ to $\bigoplus \mathbb{R}\left(\mathcal{E} \otimes \mathcal{L}^{d}\right)_{x_{i}}$.

Lemma

Let $k \geqslant 1$, there exists d_{k} s.t. $\forall d \geqslant d_{k}, \forall x \in M^{k} \backslash \Delta_{k}, \mathrm{ev}_{x}^{d}$ is surjective, where:

$$
\Delta_{k}=\left\{\left(x_{1}, \ldots, x_{k}\right) \in M^{k} \mid \exists i \neq j \text { such that } x_{i}=x_{j}\right\} .
$$

Kac-Rice formulas

Theorem

Let $k \geqslant 1$. Let $d \geqslant d_{k}$ and $s_{d} \sim \mathcal{N}(\mathrm{Id})$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$. For any continuous $\psi: M^{k} \rightarrow \mathbb{R}$, we have:

$$
\mathbb{E}\left[\int_{Z_{d}^{k} \backslash \Delta_{k}} \Psi(x)\left|\mathrm{d} V_{Z_{d}}\right|^{k}\right]=\frac{1}{(2 \pi)^{\frac{\kappa k}{2}}} \int_{M^{k}} \Psi(x) \mathcal{R}_{k}^{d}(x)\left|\mathrm{d} V_{M}\right|^{k},
$$

where

$$
\mathcal{R}_{k}^{d}(x)=\frac{\mathbb{E}\left[\prod_{i=1}^{k}\left|\operatorname{det}^{\perp}\left(\nabla_{x_{i}} s_{d}\right)\right| \mid \operatorname{ev}_{x}^{d}\left(s_{d}\right)=0\right]}{\left|\operatorname{det}^{\perp}\left(\operatorname{ev}_{x}^{d}\right)\right|}
$$

Kac-Rice formulas

Theorem

Let $k \geqslant 1$. Let $d \geqslant d_{k}$ and $s_{d} \sim \mathcal{N}(\mathrm{Id})$ in $\mathbb{R} H^{0}\left(\mathcal{X}, \mathcal{E} \otimes \mathcal{L}^{d}\right)$. For any continuous $\Psi: M^{k} \rightarrow \mathbb{R}$, we have:

$$
\mathbb{E}\left[\int_{Z_{d}^{k} \backslash \Delta_{k}} \Psi(x) \mid \mathrm{d} V_{\left.Z_{d}\right|^{k}}\right]=\frac{1}{(2 \pi)^{\frac{\kappa}{2}}} \int_{M^{k}} \Psi(x) \mathcal{R}_{k}^{d}(x)\left|\mathrm{d} V_{M}\right|^{k},
$$

where

$$
\mathcal{R}_{k}^{d}(x)=\frac{\mathbb{E}\left[\prod_{i=1}^{k}\left|\operatorname{det}^{\perp}\left(\nabla_{x_{i}} s_{d}\right)\right| \mid \operatorname{ev}_{x}^{d}\left(s_{d}\right)=0\right]}{\left|\operatorname{det}^{\perp}\left(\operatorname{ev}_{x}^{d}\right)\right|}
$$

- $\mathcal{R}_{k}^{d}(x)$ does not depend on ∇.
- If $r=1$, $\left|\operatorname{det}^{\perp}\left(\nabla_{x} s\right)\right|=\left\|\nabla_{x} s\right\|$.

Asymptotic of the expectation for hypersurfaces $(r=1)$
For all $x \in M, \mathrm{ev}_{x}^{d}\left(\mathrm{ev}_{x}^{d}\right)^{*}$ is the variance of $s_{d}(x)$, it equals to $e_{d}(x, x)$.
Kac-Rice for $k=1$:

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]=\frac{1}{\sqrt{2 \pi}} \int_{M} \phi(x) \frac{\mathbb{E}\left[\left\|\nabla_{x} s_{d}\right\|| | s_{d}(x)=0\right]}{\sqrt{e_{d}(x, x)}}\left|\mathrm{d} V_{M}\right|
$$

Asymptotic of the expectation for hypersurfaces $(r=1)$
For all $x \in M, \operatorname{ev}_{x}^{d}\left(\operatorname{ev}_{x}^{d}\right)^{*}$ is the variance of $s_{d}(x)$, it equals to $e_{d}(x, x)$.
Kac-Rice for $k=1$:

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]=\frac{1}{\sqrt{2 \pi}} \int_{M} \phi(x) \frac{\mathbb{E}\left[| | \nabla_{x} s_{d} \|| | s_{d}(x)=0\right]}{\sqrt{e_{d}(x, x)}}\left|\mathrm{d} V_{M}\right| .
$$

$\left(s_{d}(x), \nabla_{x} s_{d}\right)$ is a centered Gaussian vector of variance:

$$
\left(\begin{array}{cc}
e_{d}(x, x) & \partial_{y_{j}} e_{d}(x, x) \\
\partial_{x_{i}} e_{d}(x, x) & \partial_{x_{i}} \partial_{y_{j}} e_{d}(x, x)
\end{array}\right)_{1 \leqslant i, j \leqslant n} .
$$

Hence, $\mathcal{R}_{d}^{1}(x)$ only depends on the first derivatives of e_{d} at (x, x).

Asymptotic of the expectation for hypersurfaces $(r=1)$
For all $x \in M, \mathrm{ev}_{x}^{d}\left(\mathrm{ev}_{x}^{d}\right)^{*}$ is the variance of $s_{d}(x)$, it equals to $e_{d}(x, x)$.
Kac-Rice for $k=1$:

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]=\frac{1}{\sqrt{2 \pi}} \int_{M} \phi(x) \frac{\mathbb{E}\left[\left\|\nabla_{x} s_{d}\right\| \mid s_{d}(x)=0\right]}{\sqrt{e_{d}(x, x)}}\left|\mathrm{d} V_{M}\right|
$$

$\left(s_{d}(x), \nabla_{x} s_{d}\right)$ is a centered Gaussian vector of variance:

$$
\left(\begin{array}{cc}
e_{d}(x, x) & \partial_{y_{j}} e_{d}(x, x) \\
\partial_{x_{i}} e_{d}(x, x) & \partial_{x_{i}} \partial_{y_{j}} e_{d}(x, x)
\end{array}\right)_{1 \leqslant i, j \leqslant n}
$$

Hence, $\mathcal{R}_{d}^{1}(x)$ only depends on the first derivatives of e_{d} at (x, x).

$$
\frac{1}{\sqrt{2 \pi}} \mathcal{R}_{d}^{1}(x)=d^{\frac{1}{2}} \frac{\operatorname{Vol}\left(\mathbb{R P}^{n-1}\right)}{\operatorname{Vol}\left(\mathbb{R P}^{n}\right)}\left(1+O\left(d^{-1}\right)\right)
$$

Asymptotics of the central moments

Central moments in terms of non-central moments

Let $p \geqslant 2$ and let $\phi \in \mathcal{C}^{0}(M)$.

$$
\begin{aligned}
m_{p}\left(\left\langle Z_{d}, \phi\right\rangle\right) & =\mathbb{E}\left[\left(\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right)^{p}\right] \\
& =\mathbb{E}\left[\prod_{i=1}^{p}\left(\int_{x_{i} \in Z_{d}} \phi\left(x_{i}\right)\left|\mathrm{d} V_{Z_{d}}\right|-\mathbb{E}\left[\int_{x_{i} \in Z_{d}} \phi\left(x_{i}\right)\left|\mathrm{d} V_{Z_{d}}\right|\right]\right)\right]
\end{aligned}
$$

Central moments in terms of non-central moments

Let $p \geqslant 2$ and let $\phi \in \mathcal{C}^{0}(M)$.

$$
\begin{aligned}
& m_{p}\left(\left\langle Z_{d}, \phi\right\rangle\right)=\mathbb{E}\left[\left(\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right)^{p}\right] \\
&=\mathbb{E}\left[\prod_{i=1}^{p}\left(\int_{x_{i} \in Z_{d}} \phi\left(x_{i}\right)\left|\mathrm{d} V_{Z_{d}}\right|-\mathbb{E}\left[\int_{x_{i} \in Z_{d}} \phi\left(x_{i}\right)\left|\mathrm{d} V_{Z_{d}}\right|\right]\right)\right] \\
&=\sum_{I \subset\{1, \ldots, p\}}(-1)^{p-|I|} \mathbb{E}\left[\int_{Z_{d}^{\prime}} \prod_{i \in I} \phi\left(x_{i}\right)\left|\mathrm{d} V_{Z_{d}}\right|^{|I|}\right] \prod_{i \notin I} \mathbb{E}\left[\int_{Z_{d}} \phi\left(x_{i}\right)\left|\mathrm{d} V_{Z_{d}}\right|\right] .
\end{aligned}
$$

Central moments in terms of non-central moments

Let $p \geqslant 2$ and let $\phi \in \mathcal{C}^{0}(M)$.

$$
\begin{aligned}
& m_{p}\left(\left\langle Z_{d}, \phi\right\rangle\right)=\mathbb{E}\left[\left(\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right)^{p}\right] \\
&=\mathbb{E}\left[\prod_{i=1}^{p}\left(\int_{x_{i} \in Z_{d}} \phi\left(x_{i}\right)\left|\mathrm{d} V_{Z_{d}}\right|-\mathbb{E}\left[\int_{x_{i} \in Z_{d}} \phi\left(x_{i}\right)\left|\mathrm{d} V_{Z_{d}}\right|\right]\right)\right] \\
&=\sum_{I \subset\{1, \ldots, p\}}(-1)^{p-|I|} \mathbb{E}\left[\int_{Z_{d}^{\prime}} \prod_{i \in I} \phi\left(x_{i}\right)\left|\mathrm{d} V_{Z_{d}}\right|^{|l|}\right] \prod_{i \notin I} \mathbb{E}\left[\int_{Z_{d}} \phi\left(x_{i}\right)\left|\mathrm{d} V_{Z_{d}}\right|\right] .
\end{aligned}
$$

For $p=2$, this is just:

$$
m_{2}\left(\left\langle Z_{d}, \phi\right\rangle\right)=\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)=\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle^{2}\right]-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]^{2}
$$

Maximal codimension is the worst

Recall that, almost surely, Z_{d} has dimension $n-r$.
If $r<n$, then for all $k \geqslant 2$, for all continuous $\Psi: M^{k} \rightarrow \mathbb{R}$.

$$
\int_{Z_{d}^{k}} \Psi\left|\mathrm{~d} V_{Z_{d}}\right|^{k}=\int_{Z_{d}^{k} \backslash \Delta_{k}} \Psi\left|\mathrm{~d} V_{Z_{d}}\right|^{k}
$$

Maximal codimension is the worst

Recall that, almost surely, Z_{d} has dimension $n-r$.
If $r<n$, then for all $k \geqslant 2$, for all continuous $\Psi: M^{k} \rightarrow \mathbb{R}$.

$$
\int_{Z_{d}^{k}} \Psi\left|\mathrm{~d} V_{Z_{d}}\right|^{k}=\int_{Z_{d}^{k} \backslash \Delta_{k}} \Psi\left|\mathrm{~d} V_{Z_{d}}\right|^{k}
$$

If $r=n,\left|\mathrm{~d} V_{Z_{d}}\right|^{k}$ is the counting measure and $Z_{d}^{k} \cap \Delta_{k}$ is not negligible.

$$
\int_{Z_{d}^{k}} \Psi\left|\mathrm{~d} V_{Z_{d}}\right|^{k}=\int_{Z_{d}^{k} \backslash \Delta_{k}} \Psi\left|\mathrm{~d} V_{Z_{d}}\right|^{k}+\binom{\text { other terms tractable }}{\text { by Kac-Rice }} .
$$

For $k=2$,

$$
\int_{Z_{d}^{2}} \Psi(x, y)\left|\mathrm{d} V_{Z_{d}}\right|^{2}=\int_{Z_{d}^{2} \backslash \Delta_{2}} \Psi(x, y)\left|\mathrm{d} V_{Z_{d}}\right|^{2}+\int_{Z_{d}} \Psi(x, x)\left|\mathrm{d} V_{Z_{d}}\right|
$$

Integral formula for the central moments

If $x=\left(x_{1}, \ldots, x_{p}\right) \in M^{p}$ and $I \subset\{1, \ldots, p\}$, we denote $x_{I}=\left(x_{i}\right)_{i \in I}$.

Applying Kac-Rice to each term in the expression of $m_{p}\left(\left\langle Z_{d}, \phi\right\rangle\right)$,

$$
m_{p}\left(\left\langle Z_{d}, \phi\right\rangle\right)=\int_{M^{p}}\left(\prod_{i=1}^{p} \phi\left(x_{i}\right)\right) \mathcal{D}_{d}^{p}(x)\left|\mathrm{d} V_{M}\right|^{p}
$$

where

$$
\mathcal{D}_{d}^{p}(x)=(2 \pi)^{-\frac{p r}{2}} \sum_{I \subset\{1, \ldots, p\}}(-1)^{p-|I|} \mathcal{R}_{d}^{|| |}\left(x_{I}\right) \prod_{i \notin I} \mathcal{R}_{d}^{1}\left(x_{i}\right) .
$$

Integral formula for the central moments

If $x=\left(x_{1}, \ldots, x_{p}\right) \in M^{p}$ and $I \subset\{1, \ldots, p\}$, we denote $x_{I}=\left(x_{i}\right)_{i \in I}$.

Applying Kac-Rice to each term in the expression of $m_{p}\left(\left\langle Z_{d}, \phi\right\rangle\right)$,

$$
m_{p}\left(\left\langle Z_{d}, \phi\right\rangle\right)=\int_{M^{p}}\left(\prod_{i=1}^{p} \phi\left(x_{i}\right)\right) \mathcal{D}_{d}^{p}(x)\left|\mathrm{d} V_{M}\right|^{p}
$$

where

$$
\mathcal{D}_{d}^{p}(x)=(2 \pi)^{-\frac{p r}{2}} \sum_{I \subset\{1, \ldots, p\}}(-1)^{p-|I|} \mathcal{R}_{d}^{|| |}\left(x_{I}\right) \prod_{i \notin I} \mathcal{R}_{d}^{1}\left(x_{i}\right) .
$$

- The density \mathcal{D}_{d}^{p} is singular along Δ_{p}.
- For $x=\left(x_{1}, \ldots, x_{p}\right) \in M^{p} \backslash \Delta_{p}, \mathcal{D}_{d}^{p}(x)$ only depends on e_{d} and its first derivatives at $\left(x_{i}, x_{j}\right)_{1 \leqslant i, j \leqslant p}$.

Density for $p=2$

For $p=2$, we have $\mathcal{D}_{d}^{2}(x, y)=(2 \pi)^{-r}\left(\mathcal{R}_{d}^{2}(x, y)-\mathcal{R}_{d}^{1}(x) \mathcal{R}_{d}^{1}(y)\right)$.

Lemma

For all d large enough, \mathcal{D}_{d}^{2} is integrable over M^{2}.

Density for $p=2$
For $p=2$, we have $\mathcal{D}_{d}^{2}(x, y)=(2 \pi)^{-r}\left(\mathcal{R}_{d}^{2}(x, y)-\mathcal{R}_{d}^{1}(x) \mathcal{R}_{d}^{1}(y)\right)$.

Lemma

For all d large enough, \mathcal{D}_{d}^{2} is integrable over M^{2}.

Lemma

There exists $K>0$ such that, for all d large enough, uniformly in $(x, y) \in M^{2}$ s.t. $\rho(x, y) \geqslant K \frac{\ln d}{\sqrt{d}}$, we have: $\mathcal{D}_{d}^{2}(x, y)=O\left(d^{r-\frac{n}{2}-1}\right)$

Density for $p=2$
For $p=2$, we have $\mathcal{D}_{d}^{2}(x, y)=(2 \pi)^{-r}\left(\mathcal{R}_{d}^{2}(x, y)-\mathcal{R}_{d}^{1}(x) \mathcal{R}_{d}^{1}(y)\right)$.

Lemma

For all d large enough, \mathcal{D}_{d}^{2} is integrable over M^{2}.

Lemma

There exists $K>0$ such that, for all d large enough, uniformly in $(x, y) \in M^{2}$ s.t. $\rho(x, y) \geqslant K \frac{\ln d}{\sqrt{d}}$, we have: $\mathcal{D}_{d}^{2}(x, y)=O\left(d^{r-\frac{n}{2}-1}\right)$

Lemma

For all d large enough, uniformly in $x \in M$ and $z \in T_{x} M$ s.t. $\|z\| \leqslant K \ln d$:

$$
\mathcal{D}_{d}^{2}\left(x, x+\frac{z}{\sqrt{d}}\right) \simeq d^{r} \mathcal{D}(\|z\|)
$$

Proof of the variance estimate

$$
\begin{aligned}
& m_{2}\left(\left\langle Z_{d}, \phi\right\rangle\right) \simeq \int_{x \in M} \int_{y \in B\left(x, K \frac{\ln d}{\sqrt{d}}\right)} \phi(x) \phi(y) \mathcal{D}_{d}^{2}(x, y)\left|\mathrm{d} V_{M}\right|^{2} \\
& \simeq d^{-\frac{n}{2}} \int_{x \in M}\left(\int_{\|z\|<K \ln d} \phi(x) \phi\left(x+\frac{z}{\sqrt{d}}\right) \mathcal{D}_{d}\left(x, x+\frac{z}{\sqrt{d}}\right) \mathrm{d} z\right)\left|\mathrm{d} V_{M}\right| \\
& \simeq d^{r-\frac{n}{2}}\left(\int_{x \in M} \phi(x)^{2}\left|\mathrm{~d} V_{M}\right|\right)\left(\int_{\mathbb{R}^{n}} \mathcal{D}(\|z\|) \mathrm{d} z\right) .
\end{aligned}
$$

Kac-Rice density for $p \geqslant 3$

Conjecture

For all $p \geqslant 3$, the sequence $\left(d^{-\frac{r p}{2}} \mathcal{D}_{d}^{p}\right)$ is "uniformly integrable" on $M^{k} \backslash \Delta_{k}$, up to a good rescaling.

Kac-Rice density for $p \geqslant 3$

Conjecture

For all $p \geqslant 3$, the sequence $\left(d^{-\frac{r p}{2}} \mathcal{D}_{d}^{p}\right)$ is "uniformly integrable" on $M^{k} \backslash \Delta_{k}$, up to a good rescaling.

Conjecture

For all $p \geqslant 3$, there exists $K_{p}>0$ s.t., for d large enough, for all $k, l \in \mathbb{N}^{*}$ with $k+I \leqslant p$, uniformly in $\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}\right) \in M^{k+l} \backslash \Delta_{k+l}$ such that $\rho\left(x_{i}, y_{j}\right) \geqslant K_{p} \frac{\ln d}{\sqrt{d}}$, we have:

$$
\mathcal{R}_{d}^{k+I}(x, y)=\mathcal{R}_{d}^{k}(x) \mathcal{R}_{d}^{\prime}(y)+O\left(d^{\frac{r}{2}(k+l)-\frac{p n}{4}-1}\right)
$$

Kac-Rice density for $p \geqslant 3$

Conjecture

For all $p \geqslant 3$, the sequence $\left(d^{-\frac{r p}{2}} \mathcal{D}_{d}^{p}\right)$ is "uniformly integrable" on $M^{k} \backslash \Delta_{k}$, up to a good rescaling.

Conjecture

For all $p \geqslant 3$, there exists $K_{p}>0$ s.t., for d large enough, for all $k, l \in \mathbb{N}^{*}$ with $k+I \leqslant p$, uniformly in $\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{l}\right) \in M^{k+l} \backslash \Delta_{k+l}$ such that $\rho\left(x_{i}, y_{j}\right) \geqslant K_{p} \frac{\ln d}{\sqrt{d}}$, we have:

$$
\mathcal{R}_{d}^{k+I}(x, y)=\mathcal{R}_{d}^{k}(x) \mathcal{R}_{d}^{\prime}(y)+O\left(d^{\frac{r}{2}(k+l)-\frac{p n}{4}-1}\right) .
$$

Theorem (Ancona, 2018)
These conjectures are true for $n=r=1$.

Tearing M^{p} to pieces

Let $p \geqslant 2$ and let $x=\left(x_{1}, \ldots, x_{p}\right) \in M^{p} \backslash \Delta_{p}$.
For all $d \geqslant 1$, we define a graph $G_{d}(x)$:

- the vertices are $\{1, \ldots, p\}$
- there is an edge between i and j iff $i \neq j$ and $\rho\left(x_{i}, x_{j}\right) \leqslant K_{p} \frac{\ln d}{\sqrt{d}}$

Tearing M^{p} to pieces

Let $p \geqslant 2$ and let $x=\left(x_{1}, \ldots, x_{p}\right) \in M^{p} \backslash \Delta_{p}$.
For all $d \geqslant 1$, we define a graph $G_{d}(x)$:

- the vertices are $\{1, \ldots, p\}$
- there is an edge between i and j iff $i \neq j$ and $\rho\left(x_{i}, x_{j}\right) \leqslant K_{p} \frac{\ln d}{\sqrt{d}}$

The connected components of $G_{d}(x)$ define a partition $\mathcal{J}_{d}(x)$ of $\{1, \ldots, p\}$. That is $\mathcal{J}_{d}(x)=\left\{J_{1}, \ldots, J_{m}\right\}$ with $\bigsqcup_{i=1}^{m} J_{i}=\{1, \ldots, p\}$.

Let \mathcal{J} be a partition of $\{1, \ldots, p\}$, we define:

$$
M_{\mathcal{J}, d}^{p}=\left\{x \in M^{p} \backslash \Delta_{p} \mid \mathcal{J}_{d}(x)=\mathcal{J}\right\}
$$

Pieces with a lonely point

Let $\mathcal{J}=\left\{J_{1}, \ldots, J_{m}\right\}$ be a partition of $\{1, \ldots, p\}$ containing a singleton. Say $J_{m}=\{p\}$.

Pieces with a lonely point

Let $\mathcal{J}=\left\{J_{1}, \ldots, J_{m}\right\}$ be a partition of $\{1, \ldots, p\}$ containing a singleton. Say $J_{m}=\{p\}$.

Let $I \subset\{1, \ldots, p-1\}$ and let $\tilde{I}=I \cup\{p\}$. We have:

$$
\begin{aligned}
(-1)^{p-|I|} \mathcal{R}_{d}^{|I|}\left(x_{I}\right) \prod_{i \notin I} \mathcal{R}_{d}^{1}\left(x_{i}\right)+(-1)^{p-|\tilde{I}|_{\mathcal{I}}}{ }_{d}^{|\widetilde{I}|}\left(x_{\tilde{I}}\right) \prod_{i \notin \tilde{I}} \mathcal{R}_{d}^{1}\left(x_{i}\right) \\
=(-1)^{p-|I|} \prod_{i \notin \widetilde{I}} \mathcal{R}_{d}^{1}\left(x_{i}\right)\left(\mathcal{R}_{d}^{|I|}\left(x_{I}\right) \mathcal{R}_{d}^{1}\left(x_{p}\right)-\mathcal{R}_{d}^{|I|+1}\left(x_{I}, x_{p}\right)\right)
\end{aligned}
$$

Pieces with a lonely point

Let $\mathcal{J}=\left\{J_{1}, \ldots, J_{m}\right\}$ be a partition of $\{1, \ldots, p\}$ containing a singleton. Say $J_{m}=\{p\}$.

Let $I \subset\{1, \ldots, p-1\}$ and let $\tilde{I}=I \cup\{p\}$. We have:

$$
\begin{aligned}
(-1)^{p-|I|} \mathcal{R}_{d}^{|I|}\left(x_{I}\right) \prod_{i \notin I} \mathcal{R}_{d}^{1}\left(x_{i}\right)+(-1)^{p-|\widetilde{I}|} \mathcal{R}_{d}^{|\widetilde{I}|}\left(x_{\tilde{I}}\right) \prod_{i \notin \widetilde{I}} \mathcal{R}_{d}^{1}\left(x_{i}\right) \\
=(-1)^{p-|I|} \prod_{i \notin \widetilde{I}} \mathcal{R}_{d}^{1}\left(x_{i}\right)\left(\mathcal{R}_{d}^{|I|}\left(x_{I}\right) \mathcal{R}_{d}^{1}\left(x_{p}\right)-\mathcal{R}_{d}^{|I|+1}\left(x_{I}, x_{p}\right)\right)
\end{aligned}
$$

For all $x \in M_{\mathcal{J}, d}^{p}$, this term is $O\left(d^{\frac{p}{2}\left(r-\frac{n}{2}\right)-1}\right)$.

$$
\mathcal{D}_{d}^{p}(x)=\sum_{I \subset\{1, \ldots, p-1\}}(\text { term } I+\operatorname{term} \tilde{I})=O\left(d^{\frac{p}{2}\left(r-\frac{n}{2}\right)-1}\right)
$$

Pieces with large clusters

Let $\mathcal{J}=\left\{J_{1}, \ldots, J_{m}\right\}$ be a partition of $\{1, \ldots, p\}$ without singleton.
We have $2 m \leqslant p$.

$$
\begin{aligned}
\operatorname{Vol}\left(M_{\mathcal{J}, d}^{p}\right) & \simeq \operatorname{Vol}(M)^{m} \prod_{i=1}^{m}\left(\frac{\ln d}{\sqrt{d}}\right)^{n\left(\left|J_{i}\right|-1\right)} \\
& \simeq \operatorname{Vol}(M)^{m}\left(\frac{\ln d}{\sqrt{d}}\right)^{n(p-m)}
\end{aligned}
$$

Pieces with large clusters

Let $\mathcal{J}=\left\{J_{1}, \ldots, J_{m}\right\}$ be a partition of $\{1, \ldots, p\}$ without singleton.
We have $2 m \leqslant p$.

$$
\begin{aligned}
\operatorname{Vol}\left(M_{\mathcal{J}, d}^{p}\right) & \simeq \operatorname{Vol}(M)^{m} \prod_{i=1}^{m}\left(\frac{\ln d}{\sqrt{d}}\right)^{n\left(\left|J_{i}\right|-1\right)} \\
& \simeq \operatorname{Vol}(M)^{m}\left(\frac{\ln d}{\sqrt{d}}\right)^{n(p-m)}
\end{aligned}
$$

If $m<\frac{p}{2}$, this volume is $o\left(d^{-\frac{n p}{4}}\right)$. Besides $\mathcal{D}_{d}^{p}(x)=O\left(d^{\frac{r p}{2}}\right)$.
By the uniform integrability condition: $\int_{M_{\mathcal{J}, d}^{p}}\left|\mathcal{D}_{d}^{p}\right|\left|\mathrm{d} V_{M}\right|^{p}=o\left(d^{\frac{p}{2}\left(r-\frac{n}{2}\right)}\right)$.

Partitions into pairs

Only remaining possibility: $\mathcal{J}=\left\{\left\{a_{i}, b_{i}\right\} \left\lvert\, 1 \leqslant i \leqslant \frac{p}{2}\right.\right\}$ is a partition into pairs of $\{1, \ldots, p\}$.

Partitions into pairs

Only remaining possibility: $\mathcal{J}=\left\{\left\{a_{i}, b_{i}\right\} \left\lvert\, 1 \leqslant i \leqslant \frac{p}{2}\right.\right\}$ is a partition into pairs of $\{1, \ldots, p\}$.

For such a \mathcal{J}, for all $x \in M_{\mathcal{J}, d}^{p}$,

$$
\mathcal{D}_{d}^{p}(x)=\prod_{i=1}^{\frac{\rho}{2}} \mathcal{D}_{d}^{2}\left(x_{a_{i}}, x_{b_{i}}\right)+O\left(d^{\frac{p}{(}\left(r-\frac{n}{2}\right)-1}\right) .
$$

Hence, denoting $\mathcal{K}=\{\{1,2\}\}$,

$$
\begin{aligned}
\int_{M_{J, d}^{p}}\left(\prod_{i=1}^{p} \phi\left(x_{i}\right)\right) \mathcal{D}_{d}^{p}(x)\left|\mathrm{d} V_{M}\right|^{p} & \simeq \prod_{i=1}^{\frac{p}{2}} \int_{M_{K, d}^{2}} \phi\left(x_{a_{i} i}\right) \phi\left(x_{b_{i}}\right) \mathcal{D}_{d}^{2}\left(x_{a_{i}}, x_{b_{i}}\right)\left|\mathrm{d} V_{M}\right|^{2} \\
& \simeq \operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)^{\frac{p}{2}} .
\end{aligned}
$$

Conclusion of the proof

- Partitions with a singleton contribute $o\left(d^{\frac{\rho}{2}\left(r-\frac{n}{2}\right)}\right)$.
- Partitions of cardinality $<\frac{p}{2}$ without singleton contribute $o\left(d^{\frac{p}{2}\left(r-\frac{n}{2}\right)}\right)$.
- Partitions into pairs contribute $\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)^{\frac{p}{2}}$.

Conclusion of the proof

- Partitions with a singleton contribute $o\left(d^{\frac{p}{2}\left(r-\frac{n}{2}\right)}\right)$.
- Partitions of cardinality $<\frac{p}{2}$ without singleton contribute $o\left(d^{\frac{p}{2}\left(r-\frac{\eta}{2}\right)}\right)$.
- Partitions into pairs contribute $\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)^{\frac{p}{2}}$.

The number of partitions into pairs of $\{1, \ldots, p\}$ equals:

$$
\mu_{p}= \begin{cases}0 & \text { if } p \text { is odd } \\ \frac{p!}{2^{\frac{p}{2}}\left(\frac{p}{2}\right)!} & \text { if } p \text { is even. }\end{cases}
$$

Thank you for your attention

Figure: Random curve in $\mathbb{R P}^{2}$ of degree $d=1000$.

Picture by Vincent Beffara.

